Evolution of block copolymer lithography to highly ordered square arrays.
نویسندگان
چکیده
The manufacture of smaller, faster, more efficient microelectronic components is a major scientific and technological challenge, driven in part by a constant need for smaller lithographically defined features and patterns. Traditional self-assembling approaches based on block copolymer lithography spontaneously yield nanometer-sized hexagonal structures, but these features are not consistent with the industry-standard rectilinear coordinate system. We present a modular and hierarchical self-assembly strategy, combining supramolecular assembly of hydrogen-bonding units with controlled phase separation of diblock copolymers, for the generation of nanoscale square patterns. These square arrays will enable simplified addressability and circuit interconnection in integrated circuit manufacturing and nanotechnology.
منابع مشابه
Thin Film Morphology of Block Copolymer Blends with Tunable Supramolecular Interactions for Lithographic Applications
A modular and hierarchical self-assembly strategy using block copolymer blends (AB/B’C) with tunable supramolecular interactions is reported. By combining supramolecular assembly of hydrogenbonding units with controlled phase separation of diblock copolymers, highly ordered square arrays or hexagonal arrays of cylindrical domains were obtained formixtures of poly(ethylene oxide)-b-poly(styrene-...
متن کاملOrdered arrays of <100>-oriented silicon nanorods by CMOS-compatible block copolymer lithography.
Dense, ordered arrays of <100>-oriented Si nanorods with uniform aspect ratios up to 5:1 and a uniform diameter of 15 nm were fabricated by block copolymer lithography based on the inverse of the traditional cylindrical hole strategy and reactive ion etching. The reported approach combines control over diameter, orientation, and position of the nanorods and compatibility with complementary meta...
متن کاملHigh-temperature resistant, ordered gold nanoparticle arrays
Ordered gold nanoparticle arrays with high lateral density of 6.87 × 1010 nanoparticles cm−2, which are stable up to temperatures of 600 ◦C, were fabricated. To this end, nanoparticles formed by thermal vacuum evaporation of Au were immobilized within the pores of nanoporous silicon wafers prepared by block copolymer lithography coupled with dry plasma etching. Even after high-temperature treat...
متن کاملDefect-free nanoporous thin films from ABC triblock copolymers.
The self-assembly of triblock copolymers of poly(ethylene oxide-b-methyl methacrylate-b-styrene) (PEO-b-PMMA-b-PS), where PS is the major component and PMMA and PEO are minor components, provides a robust route to highly ordered, nanoporous arrays with cylindrical pores of 10-15 nm that show promise in block copolymer lithography. These ABC triblock copolymers were synthesized by controlled liv...
متن کاملA plasmonic biosensor array by block copolymer lithography†
Highly uniform and dense, hexagonal noble metal nanoparticle arrays were achieved on large-area transparent glass substrates via scalable, parallel processing of block copolymer lithography. Exploring their localized surface plasmon resonance (LSPR) characteristics revealed that the Ag nanoparticle array displayed a UV-vis absorbance spectrum sufficiently narrow and intense for biosensing appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 322 5900 شماره
صفحات -
تاریخ انتشار 2008